318 research outputs found

    Clumps of material orbiting a black hole and the QPOs

    Full text link
    Clumps of material orbiting a black hole may be disturbed, somewhat like comets in the Kuiper belt, to relatively small periastron orbits. Each periastron passage changes the orbital parameters in such a way that the orbit becomes more and more eccentric and the angular momentum approaches the critical value for tidal capture. When this value is reached, the body is suddenly caught by the relativistic potential to the last periastron (occurring at two Schwarzschild radii for a non rotating black hole). In this process the transfer of orbital into internal energy heats the body before it makes a few more turns toward the horizon of the black hole. Because of strong relativistic effects this last bright message from the object is seen as a quasi-periodic flare. Assuming that a black hole may be fed by a large number of such small debris we calculate light curves expected from such events. We investigate the resemblance of the Fourier spectra of such light curves with those of observed QPOs.Comment: 3 pages, 6 figure

    Tidal Capture by a Black Hole and Flares in Galactic Centres

    Full text link
    We present the telltale signature of the tidal capture and disruption of an object by a massive black hole in a galactic centre. As a result of the interaction with the black hole's strong gravitational field, the object's light curve can flare-up with characteristic time of the order of 100 sec \times (M_{bh} / 10^6 M_{Solar}). Our simulations show that general relativity plays a crucial role in the late stages of the encounter in two ways: (i) due to the precession of perihelion, tidal disruption is more severe, and (ii) light bending and aberration of light produce and enhance flares seen by a distant observer. We present our results for the case of a tidally disrupted Solar-type star. We also discuss the two strongest flares that have been observed at the Galactic centre. Although the first was observed in X-rays and the second in infra-red, they have almost identical light curves and we find it interesting that it is possible to fit the infra-red flare with a rather simple model of the tidally disrupted comet-like or planetary object. We discuss the model and possible scenarios how such an event can occur.Comment: 3 pages, 1 figur

    Modelling the light-curves of objects tidally disrupted by a black hole

    Full text link
    Tidal disruption by massive black holes is a phenomenon, during which a large part of gravitational energy can be released on a very short time-scale. The time-scales and energies involved during X-ray and IR flares observed in Galactic centre suggest that they may be related to tidal disruption events. Furthermore, aftermath of a tidal disruption of a star by super-massive black hole has been observed in some galaxies, e.g. RX J1242.6-1119A. All these discoveries increased the demand for tools for tidal disruption study in curved space-time. Here we summarise our study of general relativistic effects on tidal deformation of stars and compact objects.Comment: 2 pages, to appear in the proceedings of the JENAM 2008, Symposium 7: "Grand Challenges in Computational Astrophysics

    Do flares in Sagittarius A* reflect the last stage of tidal capture?

    Full text link
    In recent years the case for the presence of 3-4 10^6 M_sun black hole in our Galactic Center has gained strength from results of stellar dynamics observations and from the detection of several rapid X-ray and IR flares observed in the Sagittarius A* from 2000 to 2004. Here we explore the idea that such flares are produced when the central black hole tidally captures and disrupts a small body - e.g. a comet or an asteroid.Comment: 6 pages, 9 figures, acknowledgments added, to appear in the Proceedings of the Albert Einstein's Century International Conference, Paris 200

    The Automatic Real-Time GRB Pipeline of the 2-m Liverpool Telescope

    Get PDF
    The 2-m Liverpool Telescope (LT), owned by Liverpool John Moores University, is located in La Palma (Canary Islands) and operates in fully robotic mode. In 2005, the LT began conducting an automatic GRB follow-up program. On receiving an automatic GRB alert from a Gamma-Ray Observatory (Swift, INTEGRAL, HETE-II, IPN) the LT initiates a special override mode that conducts follow-up observations within 2-3 min of the GRB onset. This follow-up procedure begins with an initial sequence of short (10-s) exposures acquired through an r' band filter. These images are reduced, analyzed and interpreted automatically using pipeline software developed by our team called "LT-TRAP" (Liverpool Telescope Transient Rapid Analysis Pipeline); the automatic detection and successful identification of an unknown and potentially fading optical transient triggers a subsequent multi-color imaging sequence. In the case of a candidate brighter than r'=15, either a polarimetric (from 2006) or a spectroscopic observation (from 2007) will be triggered on the LT. If no candidate is identified, the telescope continues to obtain z', r' and i' band imaging with increasingly longer exposure times. Here we present a detailed description of the LT-TRAP and briefly discuss the illustrative case of the afterglow of GRB 050502a, whose automatic identification by the LT just 3 min after the GRB, led to the acquisition of the first early-time (< 1 hr) multi-color light curve of a GRB afterglow.Comment: PASP, accepted (8 pages, 3 figures

    The GRB Variability/Peak Luminosity Correlation: new results

    Get PDF
    We report test results of the correlation between time variability and peak luminosity of Gamma-Ray Bursts (GRBs), using a larger sample (32) of GRBs with known redshift than that available to Reichart et al. (2001), and using as variability measure that introduced by these authors. The results are puzzling. Assuming an isotropic-equivalent peak luminosity, as done by Reichart et al. (2001), a correlation is still found, but it is less relevant, and inconsistent with a power law as previously reported. Assuming as peak luminosity that corrected for GRB beaming for a subset of 16 GRBs with known beaming angle, the correlation becomes little less significant.Comment: 11 pages, 10 figures, MNRAS, accepte
    corecore